PROBLEM SET 11

- 1. French problem 6-9.
- 2. French problem 6-15(a).
- **3.** French problem 8-9. Note that $\frac{1}{2}m\langle v^2\rangle = \frac{3}{2}kT$ for the sodium atoms in the vapor, where T is the temperature in degrees Kelvin (°K), and k is Boltzmann's constant, 1.38×10^{-23} J/°K.
- 4. French problem 8-12.
- **5.** A tank is filled with water to a height H. A hole is punched in its wall a depth h below the surface of the water.
- **a.** Find the horizontal distance from the bottom of the tank that the stream of water hits the ground.
- **b.** Could a hole punched at a different depth produce a stream with the same horizontal range? If so, at what depth?
- 6. Consider the stagnant air at the front edge of an airplane wing and the air rushing over a wing surface at speed v. Find the greatest possible value for v in streamline flow, using Bernoulli's equation and assuming that air is incompressible. Take the density of air to be 1.2×10^{-3} g/cm³. Compare this numerical result with the speed of sound, 340 m/sec.
- **7.** Verify by explicit computation in a Cartesian coordinate system that

$$\nabla \times (\nabla f(x, y, z)) = 0$$

8.

- (a.) Consider the function $f(x, y, z) \equiv x^2 + y^2 z^2$. At the point (x, y, z) = (3, 4, 5), find the direction of a vector ds (of small fixed length) such that $df/|d\mathbf{s}|$ is a maximum.
- (b.) Consider the surface $z(x,y) = \sqrt{x^2 + y^2}$. At the point (x,y,z) = (3,4,5), find the direction of a vector $d\mathbf{u}$ (of small fixed length) which is normal to this surface.
- **9.** A fluid has a velocity field

$$\mathbf{v}(x, y, z, t) = (\hat{\mathbf{y}}x - \hat{\mathbf{x}}y)\omega(t)$$

where ω is some function of time t.

(a.) Prove that the fluid density $\rho(x, y, z, t)$ satisfies

$$y\frac{\partial\rho}{\partial x} - x\frac{\partial\rho}{\partial y} = \frac{1}{\omega}\frac{\partial\rho}{\partial t}$$

- (b.) Show that the angular velocity of the fluid about the origin, evaluated at an arbitrary point, is half of $\nabla \times \mathbf{v}$ evaluated at the same point.
- (c.) If $\omega(t) = \omega_0 = \text{constant}$, prove that

$$\frac{d\mathbf{v}}{dt} = -\mathbf{r}\omega_0^2$$

where $\mathbf{r} = \hat{\mathbf{x}}x + \hat{\mathbf{y}}y$, and $d\mathbf{v}/dt$ is the time rate of change of the velocity of an element of fluid that is temporarily at (x, y, z) at time t.